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Abstract Conjugate vaccines are being widely used since
their introduction. Nowadays the interest in these vaccines is
still growing and new antigens and conjugate chemistry are
being studied and developed. Pneumococcal surface protein A
(PspA) is one of the most studied pneumococcal antigens and
is an important vaccine candidate. One approach to broaden
the conjugate vaccine coverage could be the conjugation of
the polysaccharide to a pneumococcal protein such as PspA.
Previous results have shown that conjugated recombinant
fragment of PspA (rPspA) not only maintained but also in
some conjugates improved the induction of protective anti-
bodies raised against the protein carrier. We describe here a
characterization study to identify the domains of
Streptococcus pneumoniae recombinant PspA (rPspA), from
family 1 clade 1 and family 2 clade 3, involved in the conju-
gation with serotype 6B capsular polysaccharide.
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Abbreviations
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Pge Phosphodiester groups
Pe Phosphomonoester groups
DMT-MM  4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-

4-methylmorpholinium chloride

Introduction

Streptococcus pneumoniae is a Gram-positive bacterium that
is the leading cause of pneumonia and meningitis in children
[1]. There are more than 90 serotypes of pneumococcal poly-
saccharides (PS) and their prevalence varies regionally. The
use of PS-protein conjugate vaccines has decreased the inci-
dence of invasive pneumococcal disease rates caused by the
serotypes included in vaccine formulations [2—4].

Pneumococcal surface protein A (PspA) is a highly immu-
nogenic protein found in any pneumococcal strain [5]. PspA is
a multi-domain protein and its molecular weight ranges from
67 to 99 kDa [6]. It is composed of four distinct domains: a N-
terminal highly charged region, a proline rich domain, a
stretch of highly conserved amino acids and a choline binding
C-terminal region [7]. The N-terminal region of PspA displays
considerable variability, which according to its primary struc-
ture can be grouped in three families, 1, 2 and 3, which are
subdivided into 6 clades [8]. More than 90 % of clinical
isolates are from families 1 and 2 [9, 10]. Conformational
structure analysis by Circular Dichroism (CD) revealed that
PspA contains 75 % of « helical structure and 25 % random
coil at the N-terminal domain [5]. This N-terminal region is
responsible for its binding to lactoferrin [11].

As a virulence factor, PspA is involved in the inhibition of
complement deposition on the bacterial surface facilitating
phagocytosis and clearance [12, 13]; it is one of the most
studied candidate antigens for a pneumococcal subunit vac-
cine. Hence, PspA has been evaluated at the Centro de
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Biotecnologia, Instituto Butantan (Sao Paulo, Brazil) as a
carrier protein for pneumococcal conjugate vaccines
[14-16], aiming at extending the coverage of the PS.
Therefore, recombinant N-terminal fragments of PspA family
1 clade 1 (rPspAl) and family 2 clade 3 (rPspA3) were
obtained [17]. Before conjugation synthesis, e-amino groups
of lysine residues were methylated with formaldehyde in order
to prevent protein-protein reactions and the capsular polysac-
charide (PS) was conjugated to the carriers through their
carboxyl groups (Aspartic and Glutamic acid residues).
Intense modification of ¢-amino groups of lysine residues
(about 70 %) did not interfere with the induction of antibodies
capable of inhibiting deposition of complement on the pneu-
mococcal surface or induction of antibodies with
opsonophagocytic activity [15, 16]. Structural studies of
rPspA1l by CD showed that after reaction with formaldehyde,
the protein lost about 22 % of its o helix structure [16]. A
comparable CD profile was also observed for rPspA3.
Furthermore, the conjugation reaction, and the chemistry in-
volving the carboxyl groups, also decreased the amount of «
helix structure of rPspA without interfering in the immuno-
logical activity [16].

To extend the panel of methodologies applied for the
characterization of these glycoconjugate vaccine candidates,
a liquid chromatography coupled to Electrospray Ionization-
Mass Spectrometry (LC/ESI-MS) approach was developed
and used to identify the protein segments involved in the
conjugation. The characterization was based on a procedure
previously developed for meningococcal glycoconjugate vac-
cines [18]. It consists in a NMR analysis to define the marker
adduct, followed by a LC/ESI-MS analysis and data process-
ing to define the carrier domains modified by the conjugation.

Materials and methods
Samples

The conjugates (Ps6B-rPspAl and Ps6B-rPspA3) and Ps6B-
Oct (oxidized polysaccharide 6B linked to 1,8-
diaminooctane) were synthesized at the Centro de
Biotecnologia, Instituto Butantan (Sdo Paulo, Brazil) as de-
scribed previously [16].

NMR analysis

In order to evaluate the degradation pathway in acidic condi-
tions, 5 mg of dried Ps6B and Ps6B-Oct were hydrolyzed in
0.75 mL of 0.1 M DCI (prepared by diluting concentrated HCI
- Merck - in deuterium oxide 99.9 % atom D - Aldrich) at 60
and 80 °C for 4 h 30 min, and the reaction progress was
verified by the 'H and *'P spectrum analysis.
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'H and *'P NMR experiments were recorded on Bruker
Avance III 400 MHz spectrometer, equipped with a high
precision temperature controller, and using 5-mm broadband
probe (Bruker). For data acquisition and processing, TopSpin
version 2.6 software (Bruker) was used. 'H NMR spectra
were collected at 25 + 0.1 °C with 32 k data points over a
10 ppm spectral width, accumulating 128 scans. The spectra
were weighted with 0.2 Hz line broadening and Fourier-
transformed. The transmitter was set at the water frequency,
which was used as the reference signal (4.79 ppm). *'P NMR
spectra were recorded at 161.9 MHz at 25 + 0.1 °C, with
32 k data points over a 20 ppm spectral width, accumu-
lating approximately 1 k of scans. The spectra were
weighted with 3.0 Hz line broadening and Fourier-
transformed. 85 % phosphoric acid in deuterium oxide
was used as an external standard (0 ppm).

All the "H and *'P NMR spectra were obtained in quanti-
tative manner using a total recycle time to ensure a full
recovery of each signal (5 x Longitudinal Relaxation
Time T1).

Bidimensional '"H—'P Heteronuclear Multiple-Bond
Correlation (HMBC) experiment was collected at 25 +
0.1 °C with a standard pulse-program. 4096 and 512 data
points were collected in F2 and F1 dimensions, respectively.
An appropriate number of scans was accumulated prior to
Fourier transformation to yield a digital resolution of 0.2 Hz
and 3.0 Hz per point in F2 and F1, respectively.

MS analysis

The conjugates Ps6B-rPspAl and Ps6B-rPspA3 were hydro-
lyzed in HC10.1 M at 80 °C for 6 h followed by neutralization
with NaOH.

The hydrolyzed conjugate samples, 20 pg of protein (micro-
BCA content), were denatured with 0.1 % RapiGest™ (Waters)
in 50 mM ammonium bicarbonate followed by incubation at
100 °C for 10 min. Then, an overnight proteolytic step with 1 pg
Trypsin at 37 °C was performed. The digestion reaction was
quenched by formic acid (0.1 % final concentration). All the
digested samples were subjected to an off-line desalting proce-
dure using Zip-Tips (Millipore) consisting in the activation with
50 % acetonitrile, conditioning with 0.1 % formic acid, passage
of the sample, washing with 0.1 % formic acid and elution with
10 pL of 40 % acetonitrile and 0.1 % formic acid. Desalted
peptides were concentrated with a Concentrator Plus
(Eppendorf) to fully evaporate the acetonitrile prior to LC/ESI-
MS analysis.

The digested samples were loaded in a NanoAcquity 5 pm
Symmetry® C18 trapping column (180 um x 20 mm, Waters),
using full loop injection, for 2 min at flow rate of 7.5 pL/min
with mobile phase A (2 % acetonitrile, 0.1 % formic acid).
Peptides were then separated on a NanoAcquity 1.7 um
BEH130 C18 analytical column (75 pum x 250 mm, Waters)
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using a 90 min gradient of 2—45 % mobile phase B (98 %
acetonitrile, 0.1 % formic acid) at a flow rate of 250 nL/min.
The column temperature was set at 35 °C.

The eluted peptides spectra were acquired in positive V-
mode in a mass range of 50-2,000m/z using a MS program
with 0.3 s scan times and fixed collision energy of 6 eV.

The reference, [Glul]-fibrinopeptide B at 600 fmol/uL,
was constantly infused by the NanoAcquity auxiliary pump
at a constant flow rate of 400 nL/min and acquired with an
interval of 30 s through the reference sprayer of the
NanoLockSpray™ source.

The data was processed using Biopharmal.ynx v.1.3.2 soft-
ware. The analysis parameters employed were: amino acid pro-
tein sequence, enzyme employed in digestion (trypsin), mass
error tolerance 20 ppm, max number of missed cleavages of 1,
intensity filter of 10,000 counts for rPspA1 and 15,000 counts for
rPspA3 and the variable modifications: methionine oxidation,
lysine methylation, lysine dimethylation were set.

Results and discussion

Acidic hydrolysis

In order to analyze the distribution of glycosylation sites in
rPspAl and rPspA3 proteins, the strategy reported in Fig. 1

Polysaccharide

Asp/Glu S
Acid hydrolysis

was applied. Due to the fact that the selected conjugation chem-
istry for the polysaccharides involves the Asp and Glu residues of
the proteins, the strategy was based on the identification of those
peptides bearing a glycosylated residue after a trypsin digestion,
which is expected to cleave protein sequences at the C-terminal
of lysine and arginine residues, except when they are followed by
a proline residue. However, to reduce the polydispersity and the
molecular weight of polysaccharides coupled to the proteins,
which would generate large size glycopeptides not detectable
by ESI-MS, and to define a specific mass increment to be used as
an unequivocal label for glycoconjugated-peptide identifications,
the first step was an acidic hydrolysis. The repeating unit of Ps6B
is [—2)-o-D-Galp(1—3)-0-D-Glep(1—3)-o-L-Rhap(1—4)-D-
Ribitol-(5-PO,4—] and the phosphodiester group can be hydro-
lyzed under mild acid conditions, while the last saccharide
remains covalently attached to the linker through a bond chem-
ically resistant to the hydrolysis conditions [19, 20].

The progress of acid hydrolysis on native (Ps6B) and 1,8-
diaminooctane-linked (Ps6B-Oct) polysaccharide, which was
conjugated to rPspA by the carboxyl groups using DMT-MM
(4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium
chloride) [15], was followed by 'H and *'P NMR. According
to literature [19], the phosphodiester linkage D-Ribitol-(5-
PO4—2)-x-D-Galp is the weakest inter-residual bond and
can be cleaved in mild acidic conditions. As revealed by 'H
and 'P spectra reported in Fig. 2a and b respectively, the
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Fig. 2 a 'H and b >'P NMR spectra of Ps6B and Ps6B-Oct native and hydrolyzed (4 h 30 min) samples

acidic hydrolysis at 80 °C for 4 h 30 min produced shorter
Ps6B and Ps6B-Oct chains, maintaining the integrity of the
repeating units.

The proton anomeric region of hydrolyzed materials showed
the proton at C; of Gal (H,%") at 5.56 ppm as well as the proton
at C; of Gle (H;“") and Rha (H,""®) at 5.09 ppm. Low intense
signals of Gal, Glc, Rha monosaccharides (H; . at 5.20 ppm,
H; g™ at 4.52 ppm, H;," at 5.20 ppm, H, 3% at 4.61 ppm,
H; "™ at 5.06 ppm; H, "™ is overlapped with a water signal)
confirming the limited non-specific cleavage of other glycosidic
bonds (Fig. 2a). Furthermore, by the analysis of Fig. 2b, it was
possible to verify the decreasing intensity of the phosphodiester
bond sign and formation of a new one corresponding to
phosphomonoester bond.

As confirmed by the 'H->'P HMBC spectrum of hydrolyzed
Ps6B-Oct, the acidic hydrolysis of the phosphodiester groups
(P4e - signal at 0.3 ppm) generates reducing end
phosphomonoester groups (P,,.), evident by the appearance of
a signal at 0.6 ppm, which correlates with protons at Cs of the
Ribitol residue (Hs"®), and doesn’t correlate with H,%" (Fig. 3).
This proves that the site of acid cleavage is at the bond between
C, from Gal and phosphate. In summary, the scalar correlations
Pue-Hy % Pye-HsR/P, -HsR® were revealed for the hydrolyzed
Ps6B-Oct.

Considering the results obtained for Ps6B and Ps6B-Oct,
the hydrolysis time for Ps6B-Oct-rPspAl and Ps6b-Oct-
rPspA3 conjugates were set as 6 h at 80 °C.

Identification of carrier regions involved in the conjugation
process

In order to identify the glycosylation distribution of Ps6B-Oct-

rPspAl and Ps6B-Oct-rPspA3 conjugates, hydrolyzed sam-
ples were trypsin digested and analyzed by LC/ESI-MS,
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according to the schematic procedure representing in
Fig. 1.

Considering that the covalent linkage between Ps6B-
Oct and Asp/Glu residues is not cleaved by acidic
hydrolysis, the molecular weight of those tryptic pep-
tides bearing a glycosylated residue should be
incremented by the saccharide adduct. Based on the
chemical conjugation consisting in a first mild oxidation
of Ps6B by sodium periodate to generate aldehyde
groups and considering that the oxidation reaction can
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Fig. 3 Heteronuclear Multiple Bond Correlation (HMBC) spectra of
Ps6B-Oct. The arrow indicates the H,%" sign of Ps6B-Oct before the

acid hydrolysis
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occur on the diol systems at C; and C, or at C, and C;
of Rib, two structures can be formed with mass incre-
ment values of 750.33 Da and 780.34 Da (Fig. 4).
The LC/ESI-MS analysis of Ps6B-Oct-rPspAl and Ps6B-
Oct-rPspA3 tryptic digests resulted in protein sequence cov-
erage of 77.2 % and 71.8 %, respectively. In Tables 1 and 2,
Ps6B-Oct-rPspAl and Ps6B-Oct-rPspA3 tryptic peptides
identified with MS signal corresponding to their unmodified
or modified forms were also reported. Because the proteins
used in conjugation were previously modified with formalde-
hyde, mono-methylated and di-methylated (Tables 1 and 2)
lysine residues were observed in the data analysis. rPspA1 has
22 Asp residues and 68 Glu residues that could be glycosyl-
ated. rPspA3 has 24 Asp and 62 Glu residues; in other words,
both have almost the same numbers of groups that could react

Fig. 4 Two possible adduct OH
structures after oxidation of
Ps6B—Structure 1 and Structure 2 O

HO

OH
0

in this conjugation reaction. The identity of these proteins is
33.6 %.

Through the analysis of Tables 1 and 2, it was
possible to verify the MS signal of Ps6B-Oct-rPspAl
and Ps6B-Oct-rPspA3 glycosylated peptides reported as
Structure 1 and Structure 2, which means the two pos-
sible glycosyl forms (Fig. 4). Differences in the glyco-
sylation profiles were found in rPspAl and rPspA3. The
N-terminal region comprises a highly charged domain in
an o helical structure (about 200 amino acids). In this
region, the first 50 amino acids usually exhibit more
than 50 % of homology [8]. Indeed, the most protective
epitopes are in this o« helical region [21]. Both rPspAs
used in this study were intensively glycosylated. The
clade defining region (CDR - amino acids ca. 200 to
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= FeoeZ2 2% =X w2 & . P
a "neBELSR L x 0 300), the most divergent domain in PspA, was more
2 grgdzgd g g5 glycosylated in rPspA3.
= N === auwn A Among all identified peptides, there are some glyco-
sylated peptides that have only one amino acid residue
%’Q«? g § é g ;:o § % 2 % é that could be conjugated to the polysaccharide moiety.
ERS SELdgd FRE I In Ps6B-Oct-rPspAl, these peptides were found in the
SEg|ldggeagn 2S48 amino acid residues 152 to 156, 152 to 158, 164 to 172
and 263 to 267 (Table 1) and in Ps6B-Oct-rPspA3 the
272 | o “ amino acid residues 31 to 36, 58 to 62, 96 to 102 and 98 to 103
EElo38E2R2g 2948 Table 2). H in other peptides it t possible t
52l9dszgE¢8 o 28 (Ta le ). Towever, in other peptides it was not possible to
SR A R B i N = ® specify which specific amino acid residue was modified.
Peptide fragmentations were performed in order to make a
Elom=vaarn oy ) o complete characterization of the modified amino acid resi-
e |grddecad F38 : i
~ dues. Unfortunately non-fragmentation spectra of quality
were obtained probably due to the lack positive charge of
& the lysine residues modified with formaldehyde.
(5] . . .
§§ oo ® S o= Figure 5 shows the sequence alignment and peptides
SE|TD2T T = T T identified for the conjugates from Ps6B-Oct-rPspAl and
Ps6B-Oct-rPspA3. All amino acid residues that can be
& glycosylated (Asp or Glu) are indicated in bold and
éjg o e e e o - italic. Modified pep.t1des are indicated. Glycosylated
segments of recombinant rPspA are shown and both
o w o 2 conjugates have multiple glycosylated regions. Clearly,
o N bl . .
PN I N I3 the glycosylation patterns of these two conjugates are
M S &S % a0 . .
N SO g za o S ¥ significantly different.

An interesting conclusion from these experimental data is
that, in spite of the intensive glycosylation at the N-terminal
region, both rPspA molecules are still able to maintain the

== D induction of protective antibodies. One hypothesis is that the
23 f, modifications did not affect protection because protein epi-
- 3 .
£ £ = topes are very short, composed of a small number of amino
— ig o g» o acids. A second hypothesis is that glycosylation of
~Z § =7 § = ~ < primary epitopes may have induced conformational
z Z 9 EX YL Z Z 9 changes exposing secondary protective epitopes that
g zzsEzsz 22 were initially hidden. This effect is described in virus
=] Q L bl ] 5% = 5% O O . . . .
= S>ae= =0 > = = antigens that are highly variable, when submitted to
epitope dampening at primary epitopes, antigenicity
2 555 2 % 2 A can be transferred to previously invisible less variable
3} [SS N N oo . .
secondary epitopes [22]. These differences of glycosyl-
ation profile on rPspA molecule did not interfere in its
] 2222z - o . . . .
& SIS EEER S function as a carrier protein. Therefore, both conjugates,
PS6B-rPspAl [16] and PS6B-PspA3 (not shown) were
§ equally able to induce functional antibodies against
) PS6B in mice.
M o =
% % & 4 M M Since the CDR domain is directly responsible for PspA’s
a a < 55 5 strict sero-cross reactivity, the consequence of specific glyco-
24 £ £ £ sylation in this region should also be further investigated; if
35 Z < oo . e
=) P v 2% @@ there will be an effect on the specificity of PspA.
E S S é § B2 E ol On a whole this work draws attention to a possible speci-
§ i 3= 5%8 - E 5 ficity in the conjugation of PSs and proteins. Since the advan-
: N 2 A v ) ; e 8‘;‘% 5% % tage of functional proteins as carriers for conjugates is becom-
o | 8 8 S - - S EQ 88 < g ing clearer, this can be an important aspect to investigate when
2| = mmqmmmgm (=TS
gl ZzZAa<<<< 0 << considering its use.
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PspAl -MHHHHHHLEEAPVASQSKAEKDY DTAKRDAENAKKALEEA----KRAQKKYEDDOKKTE 55
R o o R S +
et B S R
PspA3 MHHHHHHLEEEAPVASQSKAEKDYDAAVKKSlAAKKHYEEVKKKAEDAQKKYDEGQKKTV 60
PspAl EKAKEEKQASEAEQKANLQYQLKLREY IQKTGDRSKIQKEMEEAEKKHKNAKAEF DKVRG 115
+++++00000000000000000000000 ++++++++++ +
R o F++++ t+++++00C000000000
PspA3 lKAKREKEASEKIAEATKEVQQASN ————— ESQRKEADKKIKIATQRKDEAEAAFATIRT 115
PspAl K—VIPSAEELKETRRKAEEAKAKEAELTKKVEEAEKKVT.AKQKLDAERAK.VALQAKIA 174
I B e R R
PsSpA3 TIVVPEPSELAETKKKAEEAKAEEKVAKRKYDYATLKVALAKKEVEAKELETIEKLQYEIS 175
PspAl ELEN--—-—-—-—— QVHRLETELKEIDESDSEDYVKEGLRVPLOSELDVKQAKL--—-———— SK 220
00000000000O0O0O oo
000000000000000000 Lt bttt ++++++t+++++ ++H++++++trtHtrrttt
PspA3 TLEQEVATAQHQVDNLKKLLAGADPDDGTEVIEAKLN-KGEAELNAKQAELAKKQTELEK 235
PspAl L--————————— = EELSDKIDELDAETAKLEKDVEDFKNSDGE-YSALYLEA 260
00000000000000000  t bttt +++t+ttttttttrttrttttttrttrttttt+t+++
PspA3 LLDSLDPEGKTQDELDKEAEEAEL DKKADELONKVADLEKEISNLEILLGGADSEDDTAA 295
PspAl AEK.LVAKKAELEKTEADLKKAVNEPEKPAEEPENPAPAPK———PAPAPQPEKPAPAPAP 317
000+++++ +++++++++++ 000000000000 0DO0O0O0DO0D0O0DOO0O 0O000000D00DO0D0O0DO0DO0OOOO
FHtttttt b
PspA3 LONKLATKKAELEKTQKELDAALNELGPDGDEEETPAPAPQPEQPAPAPKPEQPAPAPKS 355
PspAl KPEKSADQQAEEDYARRSEEEYNRLTQQQOPPKAEKPAPAPVPKPEQPAPAPKTGWKQENGMW 377
00000000000000O0O0 000000000000 00000000000000000000000O0O0
PspA3 R 356

Fig. 5 Sequence alignment of peptides derived from Ps6B-Oct-rPspAl
and Ps6B-Oct-rPspA3 conjugates. (°) below the rPspAl sequence or
above the rPspA3 sequence represents the peptide(s) identified as non-
glycosylated peptides; (+) below the rPspAl sequence and above the
rPspA3 sequence represents peptide(s) identified as glycosylated peptides
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